Logistic Regression

Example

1. Given a logistic equation $F(t)=\frac{1}{1+C e^{-k t}}$, what line do you get after logistic regression?

Solution: In order to do a logistic regression, instead of plotting F vs t, we graph $\ln (F /(1-F))$ vs t. The reason to do this is because

$$
\frac{F}{1-F}=\frac{1 /\left(1+C e^{-k t}\right)}{1-1 /\left(1+C e^{-k t}\right)}=\frac{1}{C e^{-k t}}=\frac{1}{C} e^{k t}
$$

So taking the \log gives us $\ln (F /(1-F))=\ln (1 / C)+\ln \left(e^{k t}\right)=k t+\ln (1 / C)$. Therefore, the slope is k and the y intercept is $\ln (1 / C)$.

Problems

2. TRUE False We can only use logistic regression if the data values have y values that lie between 0 and 1 exclusive.

Solution: In order to transform the data, we need to take $\ln (F /(1-F))$ and we can only do this if F is between 0 and 1 .
3. TRUE False We commonly use logistic regression to model probability of success/failure.

> Solution: An example of something we would use logistic regression for is the probability of passing the class versus how many hours you studied. This is because at you go to ∞ hours, your probability of passing goes to 1 and going towards 0 hours goes to a probability of 0 . So, this is similar to a logistic function and we could try to model this as a logistic function using logistic regression.

Z-Scores

Example

4. Let $f(x)=\frac{1}{2 \sqrt{2 \pi}} e^{-(x-5)^{2} / 8}$ be a PDF. Calculate the probability $P(3 \leq X \leq 7)$.

Solution: The formula for a normal distribution is $\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$, and so we see that $\mu=5$ and $\sigma=2$. We split up the probability $P(3 \leq X \leq 7)$ at the mean to get $P(3 \leq X \leq 7)=P(3 \leq X \leq 5)+P(5 \leq X \leq 7)$. We use z scores. In order to calculate z scores, we take $\frac{|a-\mu|}{\sigma}$ where a is the value you want to take the z score of. So, the z score of 3 is $\frac{|3-5|}{2}=1$ and the z score of 7 is $\frac{|7-5|}{2}=1$. So the probability is

$$
z(1)+z(1)=0.3413+0.3413=0.6826 .
$$

Problems

5. TRUE False We can only use the z score to calculate probabilities of normal distributions (bell curves).

Solution: The table only applies for probability of normal distributions.
6. True FALSE The normal distribution with positive mean can only take on positive values. $(P(X \leq 0)=0)$

Solution: The normal distribution can take on any real value.
7. Let f be normally distributed with mean 1 and standard deviation 4. Calculate the probability $P(X \geq 3)$.

Solution: In order to calculate this probability, we need the probability area to touch the median so we have $P(X \geq 3)=P(X \geq 1)-P(1 \leq X \leq 3)$. The first probability is $\frac{1}{2}$ and the second has the z score $\frac{|3-1|}{4}=\frac{1}{2}$. So the answer is $0.5-z(0.5)$.
8. Let f be normally distributed with mean -2 and standard deviation 4. Calculate the probability $P(-1 \leq X \leq 1)$.

Solution: We have $P(-1 \leq X \leq 1)=P(-2 \leq X \leq 1)-P(-2 \leq X \leq-1)$ and we calculate the z scores. The first is $\frac{|1-(-2)|}{4}=\frac{3}{4}$ and the second is $\frac{|-1-(-2)|}{4}=\frac{1}{4}$. Thus, the probability is $z(0.75)-z(0.25)$.
9. Let f be normally distributed with mean -2 and standard deviation 4. Calculate the probability $P(-3 \leq X \leq 1)$.

Solution: We have $P(-3 \leq X \leq 1)=P(-3 \leq X \leq-2)+P(-2 \leq X \leq 1)$ and we calculate the z scores. The first is $\frac{|-3-(-2)|}{4}=\frac{1}{4}$ and the second is $\frac{|1-(-2)|}{4}=\frac{3}{4}$. Thus, the probability is $z(0.25)+z(0.75)$.
10. Let f be normally distributed with mean 5 and standard deviation 2. Calculate the probability $P(X \leq 3)$.

Solution: We have $P(X \leq 3)=P(X \leq 5)-P(3 \leq X \leq 5)$ and we calculate the z scores. The first is just $\frac{1}{2}$ and the second is $\frac{|3-5|}{2}=1$. Thus, the probability is $0.5-z(1)$.
11. Let f be normally distributed with mean 3 and standard deviation 5. Calculate the probability $P(X \geq 0)$.

Solution: We have $P(X \geq 0)=P(0 \leq X \leq 3)+P(3 \leq X)$ and we calculate the z scores. The second is just $\frac{1}{2}$ and the first is $\frac{|0-3|}{5}=0.6$. Thus, the probability is $0.5+z(0.6)$.
12. Let f be normally distributed with mean 2 and standard deviation 1 . Calculate the probability $P(X \leq 0)$.

Solution: We have $P(X \leq 0)=P(X \leq 2)-P(0 \leq X \leq 2)$ and we calculate the z scores. The first is just $\frac{1}{2}$ and the second is $\frac{|0-2|}{1}=2$. Thus, the probability is $0.5-z(2)$.
13. Let f be normally distributed with mean 0 and standard deviation 5. Calculate the probability $P(-2 \leq X \leq-1)$.

Solution: We have $P(-2 \leq X \leq-1)=P(-2 \leq X \leq 0)-P(-1 \leq X \leq 0)$ and we calculate the z scores. The first is $\frac{|-2-0|}{5}=\frac{2}{5}$ and the second is $\frac{|-1-0|}{5}=\frac{1}{5}$. Thus, the probability is $z(2 / 5)-z(1 / 5)$.

